
Bitrig ports: BSD ports, packages, and Uncommon Operating Systems

John C. Vernaleo, Ph.D.
jcv@bitrig.org

Bitrig

Abstract
The BSD operating systems strive to provide a com-
plete, usable system in one coherent place. In theory
this works well, but in practice, most people depend
on a variety of third party software for their computing
needs. This is where ports and packages come in. We
will discuss some issues that come up in dealing with
packaging third party software on an uncommon oper-
ating system (Bitrig) along with how this can help us to
improve software portability for all the BSD operating
systems (and other UNIX-like systems).

1 Introduction

The various BSD operating systems each strive to pro-
vide a complete, usable system in one coherent place
with varying focuses of their own. While they mostly
succeed at this goal, in practice it is rare for most peo-
ple to use a UNIX-like system without a variety of
third party software. Third party software is arguable
the reason UNIX rose to prominence (and for better or
worse that is a large part of why GNU choose to mostly
follow UNIX).

One could download, extract, patch, configure, com-
pile, and install each program one needs separately.
For small programs this even works. But for larger pro-
grams (web browsers, editors, etc.) or a large number
of programs, this gets very cumbersome, very quickly.
It is also almost impossible to stay up to date with soft-
ware when dealing with each piece individually.

The solution is to have some system of packages
(or ports in OpenBSD speak) that is distributed by the
operating system vendor to make third party software
easy to install and manage. While not strictly part
of the BSD system (OpenBSD for example makes it
very clear that ports are not audited or held to the same
standards as things in base [4]), many users will spend
most of their time using the third party software. Third
party software also ends up requiring more developers
than the base system (compare commit logs between

src and ports for any system and count distinct contrib-
utors).

There are a few challenges with third party software.
For starters, we largely live in a Linux world (as free
Unixes go) or even worse an OSX or Windows world.
This means that most software was probably not built
for the BSD of our choice. If everyone followed stan-
dards, this wouldn’t be a problem. That’s what POSIX
is for you might say. Unfortunately, that does not get
us very far. POSIX just gets us a mostly compatible set
of system calls but does not get us everything. If it did,
we probably would not need the configure step when
building software.

The problem gets even worse when you are not us-
ing one of the largest BSDs. Even more exotic oper-
ating systems (Plan 9, GNU/HURD, etc.) likely have
problems beyond even that. This paper will discuss
some of the problems from the perspective of one of
the less common BSDs (Bitrig) and some of the ways
we work to deal with it. Hopefully these solutions can
help other operating systems along with pushing us all
towards more compatible and cross-platform software.

2 Bitrig

The work for this paper was primarily done on the Bi-
trig operating system so a short introduction to Bitrig
is useful. Bitrig is a free, fast, and secure Unix-like
Open Source operating system [6]. It started as a fork
of OpenBSD but with a focus on modern platforms
and a modernized tool chain, development tools, and
development practices. The supported platforms are
amd64 and arm (with experimental work on armd64
(aarch64)).

In terms of modernizing tools and practices, Bitrig
uses clang as the base compiler and git for version con-
trol. Github.com is used for hosting and dealing with
patches (pull requests really) and bugs reports from
users. Through the use of modern software develop-
ment methods we hope to make Bitrig easier for new-

mailto:jcv@bitrig.org


comers to contribute to.
There are a number of other features to Bitrig but

they are already described elsewhere [10] and are not
specifically relevant here.

3 Ports and Packages

3.1 Bitrig Ports
Here we will briefly describe the Bitrig ports sys-
tem [1]. Bitrig ports are based on OpenBSD ports. We
have made some minor changes, but for the most part
the systems remain very similar. Ports is a set of Make-
files to download, configure, compile, and package
third party software. The package are then installed,
removed, or otherwise dealt with using the pkg add
tools which are a set of Perl scripts also inherited from
OpenBSD. Ports also includes any patches or other
files needed to build or install the software. OpenBSD
assumes ’normal’ users will only interact with pack-
ages and leave ports to developers [4]. Bitrig makes no
such assumption.

From the point of view of most third party software,
Bitrig should seem pretty much the same as OpenBSD
so one might expect to be able to just build the ports
tree and have everything work. Unfortunately, this
goes wrong in a few ways.

The first way is because Bitrig is not (quite)
OpenBSD. We’ve made some changes that matter to
some ports. For starters, instead of using the GNU
compiler as the system compile, we use clang. Mod-
ern versions of clang are very good and compile al-
most anything the GNU compilers can handle (for c
and c++, FORTRAN and other languages are a differ-
ent story). Unfortunately, almost is not good enough.
There is still a ton of gcc specific code in the wild. In
some cases this could be a failure on clang’s part but in
every case we’ve actually hit, it is non-standard C that
gcc accepts.

The best solution here is to fix the code to work with
clang (assuming clang is correct). If that is not pos-
sible (some software such as emacs pretty thoroughly
assume GNU compilers) the program can still be built
with gcc. The ports system can normally handle this
with a simple variable (more or less setting CC tem-
porarily) but in some cases, software will hardcode gcc
in the Makefiles (cmus is an example I recently came
across). This requires patching the Makefile and is
something people should not do if they want things to
be portable at all. FORTRAN developers have known
that hardcoding a specific f77 compilers is a problem
for portability for a long time, but in the C/C++ world,
gcc has been dominant for long enough that people do
hard code it.

Bitrig uses a different C++ library (libc++ and
libc++abi instead of libstdc++). This can be fixed in

the ports with a simple find and replace and is really
just specify to the ports infrastructure. Other changed
libraries are handled similarly.

The most common problem is simply that Bitrig
is not named OpenBSD. Most nontrivial software (at
least the traditional compiled ones) use some com-
bination of configure, automake, and other tools.
These were meant to deal with multiple platforms
(largely stemming from the days when there were more
UNIXes than today). The common mantra is to test for
capabilities not names. Unfortunately, no one seems to
do that. The vast majority of software seems to test
for OS name (and sometimes version!) during the con-
figure step. This is a major problem for any uncom-
mon system. In the case of Bitrig one can usually just
modify the config scripts by adding a test for Bitrig in
the same place as the OpenBSD test. It is unfortunate
that every new OS needs to do this, but without people
getting significantly more skilled with configure, we
are stuck with it. To avoid this in their own software,
developers should either test for capabilities with con-
figure or at least have sensible defaults for unknown
operating systems.

3.2 Other Ports/Package systems
It has been suggested by several parties that Bitrig
should switch to a different ports and package system.
FreeBSD has pkgng [5] and NetBSD has pkgsrc [3].
Both of these have a number of positive features and
pkgsrc does work on Bitrig at this time, but they don’t
solver the fundamental problem. Ultimately, no pack-
ages system, no matter how good it is will make soft-
ware build on something if the code does not support
it without patching the code.

That being said, there are benefits to using a pack-
aging system shared by other OSes. Shared packaging
systems allow systems to share effort. For smaller sys-
tems, this can be a huge benefit. In the case of Bitrig
ports it would eliminate the time consuming job of im-
porting changes from the OpenBSD ports repository.
This is potentially a big win but there is a price. No
system will hold back the larger (and frequently hard-
est to update) packages such as Firefox and Chromium
for one of the less common operating systems they
support. It wouldn’t make sense for their other users.
This means that packages will end up broken and since
the packaging system is shared, there is no way for a
operating system such as Bitrig to stay on an older ver-
sion. This leaves developers to either live with poten-
tial broken packages or with a rush to test or fix things.
This is not a failure of those packaging systems, it is
just the reality that there is a price to pay for shared
package systems despite the benefits of them which a
large part of why Bitrig has not completely adopted
such a shared system.



OS ports/packages
Bitrig 5,000 [1]

OpenBSD 9,451 [9]
NetBSD 14,132 [8]
MacPorts 16,500 [11]
FreeBSD 25,580 [2]
Debian 48,608 [7]

Table 1: Relative number of ports and packages for
different systems.

While on the topic of other systems, it is interesting
to look at the number of packages or ports supported
by each system. Table 1 shows the approximate num-
ber of packages each BSD has. This includes mac-
ports since that has some similarity to the various BSD
systems and Debian for comparison. There are many
caveats for these numbers since they vary in time and
by platform or architecture. Also the counts cannot be
completely comparable since different packagers will
break ports up differently or split different flavors of
the same software up in different ways. The numbers
still give enough of a sense to be useful. There are of
course other OSes that could be included (Dragonfly-
BSD, Fedora, Gentoo, Nix, cygwin, etc.) but these are
the ones the author was most familiar with.

It is tempting to assume that the best system is the
one with the most options, in which case we should all
use Debian GNU/Linux (by a wide margin). While De-
bian is a very good OS for a lot of reasons, obviously
that is not a conclusion everyone has come to. One
of the philosophies that has driven Bitrig (and many
of the BSDs) is that minimalism has a value. Maybe
dropping packages that have minimal value is a better
way forward. If not, those numbers are rather intimi-
dating (particularly when one considers the number of
people who actively maintain the packages and ports
for most BSDs). Ports based on interpreted languages
(Perl, Python, LATEXpackages, and a few others) usu-
ally work untouched on all operating systems improv-
ing the numbers although even those sometimes make
incompatible assumptions.

4 Upstream It!

The best solution is to get any changes made for your
OS accepted into the upstream package. The cost of
carrying around patches within your package system
is extremely high. Diffs are very fragile by their na-
ture. Minor changes to the original files will break
them. This means updating software becomes a time
consuming and dangerous task. Equally important,
patches kept in a packages system won’t benefit other
systems.

Of course one could ask why would an upstream au-
thor even want patches to support an operating system
they do not use (and very possibly few people use).
While this might seem fair, we would ask the inverse
question: Has any software actually been made worse
by being more portable? There are certainly a few
cases where a mess of #ifdefs leave unreadable code,
but those should be exceptions. If your patches depend
on that you should probably reevaluate what you are
doing and if it can be done better.

Once you do submit packages upstream, there seem
to be three possible actions from the upstream devel-
opers:

1. Accept it.

2. Reject it.

3. Ignore it.

In the first case, your work is done. The next time
you update the package in your ports system, no patch
will be needed. In our experience with Bitrig, this
seems to be the most likely outcome. Most authors
want their code to work in as many places as possible
and are happy to accept patches.

In the second case, you may be able to work with the
upstream author to get your patch accepted or you may
be stuck supporting the patch forever. We’ve seen both
cases, but generally this doesn’t seem to likely (despite
the threat of rejection appearing to be a major reason
why people do not try to upstream patches).

The third case is the most problematic (and happens
regularly enough). The upstream authors just do not re-
spond at all. This might mean the project is abandoned
(Sourceforge is almost a graveyard for projects) or it
might just be an unresponsive author. It is possible to
just keep the patch local as in case two, but that is fre-
quently not the best solution. Better is probably to ei-
ther fork the software or drop it completely. The com-
mon github workflow seems to encourage the forking
solution since submitting patches starts with a fork of
the repository. If the package is something you (or the
project you are working on) actually uses, sometimes
forking it and taking over an otherwise dead project is
a good idea but for large or complex problems it is of-
ten more work then it is worth. The other option is to
just drop the software. Sometimes it is better to not
keep things that have been abandoned by their authors
and will never be updated again. While we all love to
point out how many packages are available on our sys-
tems (or at least those of us who package software do
(see Table 1)), some packages are just not needed any
more and probably have security flaws that will never
be fixed. We have tried to be fairly cut-throat about re-
moving abandoned packages with Bitrig and even that
could probably be done more aggressively.



5 Conclusion

In this paper we described the Bitrig ports system for
third party packages. We discussed the challenges of
making third party software work on an uncommon
system. Systems that support multiple operating sys-
tems were briefly discussed as well as their limitations
(from the point of view of a packager rather than a
user). The need to modify third party code and the ben-
efits of getting those changes into the upstream soft-
ware was discussed.

6 Acknowledgments

This work was made possible by by the rest of the
Bitrig team for all their work on Bitrig, my em-
ployer, Company 0, for always encouraging Bitrig, and
NYC*BUG for a number of helpful discussions on
these and similar topics.

References

[1] DEVELOPERS, T. Bitrig ports. https:

//github.com/bitrig/bitrig-ports. Ac-
cessed: 2016-01-06.

[2] DEVELOPERS, T. P. Freebsd ports over-
all. http://portsmon.freebsd.org/

portsoverall.py. Accessed: 2016-01-04.

[3] FOUNDATION, T. pkgsrc: portable package
build system. https://www.pkgsrc.org/. Ac-
cessed: 2016-01-04.

[4] OPENBSD. The openbsd packages and ports sys-
tem. http://www.openbsd.org/faq/faq15.

html#Intro. Accessed: 2016-01-06.

[5] TEAM, T. Pkg primer. https://wiki.

freebsd.org/pkgng. Accessed: 2016-01-04.

[6] THE BITRIG DEVELOPERS. Bitrig. https://

www.bitrig.org/. Accessed: 2016-01-02.

[7] THE DEBIAN PROJECT. All debian packages
in ”jessie”. https://packages.debian.org/
stable/allpackages?format=txt.gz. Ac-
cessed: 2016-01-04.

[8] THE NETBSD PKGSRC DEVELOP-
ERS. The netbsd packages collection.
http://ftp.netbsd.org/pub/pkgsrc/

current/pkgsrc/README-all.html. Ac-
cessed: 2016-01-04.

[9] THE OPENBSD PORTS DEVELOPERS. Openbsd
ports. http://ports.su/. Accessed: 2016-01-
04.

[10] VERNALEO, J. C. Bitrig. http:

//www.netpurgatory.com/web_stuff/

media/2015-05_bitrig.pdf, 2015.
NYC*Bug Meeting.

[11] WIKIPEDIA. Macports. https://en.

wikipedia.org/wiki/MacPorts. Accessed:
2016-01-04.

https://github.com/bitrig/bitrig-ports
https://github.com/bitrig/bitrig-ports
http://portsmon.freebsd.org/portsoverall.py
http://portsmon.freebsd.org/portsoverall.py
https://www.pkgsrc.org/
http://www.openbsd.org/faq/faq15.html#Intro
http://www.openbsd.org/faq/faq15.html#Intro
https://wiki.freebsd.org/pkgng
https://wiki.freebsd.org/pkgng
https://www.bitrig.org/
https://www.bitrig.org/
https://packages.debian.org/stable/allpackages?format=txt.gz
https://packages.debian.org/stable/allpackages?format=txt.gz
http://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/README-all.html
http://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/README-all.html
http://ports.su/
http://www.netpurgatory.com/web_stuff/media/2015-05_bitrig.pdf
http://www.netpurgatory.com/web_stuff/media/2015-05_bitrig.pdf
http://www.netpurgatory.com/web_stuff/media/2015-05_bitrig.pdf
https://en.wikipedia.org/wiki/MacPorts
https://en.wikipedia.org/wiki/MacPorts

	Introduction
	Bitrig
	Ports and Packages
	Bitrig Ports
	Other Ports/Package systems

	Upstream It!
	Conclusion
	Acknowledgments

